Step-by-Step AI Guide for Non-Tech Business Owners
A simple, practical workbook showing the real areas where AI adds value — and where it doesn’t.
The Dev Guys — Built with clarity, speed, and purpose.
The Need for This Workbook
If you run a business today, you’re expected to “have an AI strategy”. All around, people are piloting, selling, or hyping AI solutions. But most non-tech business leaders face two poor choices:
• Agreeing to all AI suggestions blindly, expecting results.
• Rejecting all ideas out of fear or uncertainty.
It guides you to make rational decisions about AI adoption without hype or hesitation.
Forget models and parameters — focus on how your business works. AI is only effective when built on your existing processes.
How to Use This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A clear order of initiatives instead of scattered trials.
Think of it as a guide, not a form. Your AI plan should be simple enough to explain in one meeting.
AI strategy is just business strategy — minus the buzzwords.
Step One — Focus on Business Goals
Focus on Goals Before Tools
Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.
Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.
Step 3 — Prioritise
Score AI Use Cases by Impact, Effort, and Risk
Choose high-value, low-effort cases first.
Think of a 2x2: impact on the vertical, effort on the horizontal.
• Quick Wins — high impact, low effort.
• Reserve resources for strategic investments.
• Minor experiments — do only if supporting larger goals.
• Avoid for Now — low impact, high effort.
Always judge the safety of automation before scaling.
Your roadmap starts with safe, effective wins.
Balancing Systems and People
Get the Basics Right First
Without clean systems, AI will mirror your chaos. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Let AI assist, not replace, your team. Over time, increase automation responsibly.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Automation Mirage — expecting overnight change.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Working with Experts
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. When AI MVP Building becomes part of your workflow quietly, it stops being hype — it becomes infrastructure.